Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402886, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526333

RESUMO

A novel one-pot deracemization method using a bifunctional chiral agent (BCA) is proposed for the first time to convert a racemate to the desired enantiomer. Specifically, chiral α, (α-diphenyl-2-pyrrolidinemethanol) formed enantiospecific cocrystals with racemic dihydromyricetin, and used its own alkaline catalysis to catalyze the racemization between the (2R,3R)-enantiomer and (2S,3S)-enantiomer in solution, achieving a one-pot spontaneous deracemization. This strategy was also successfully extended to the deracemization of three other racemic compound drugs: (R,S)-carprofen, (R,S)-indoprofen, and (R,S)-indobufen. The one-pot deracemization method based on the BCA strategy provides a feasible approach to address the incompatibility between cocrystallization and racemization reactions that are commonly encountered in the cocrystallization-induced deracemization process and opens a new window to develop essential enantiomerically pure pharmaceutical products with atom economy.

2.
Chem Sci ; 15(11): 3800-3830, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487216

RESUMO

Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.

3.
Chem Sci ; 14(43): 11955-12003, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969602

RESUMO

Chiral separation has become a crucial topic for effectively utilizing superfluous racemates synthesized by chemical means and satisfying the growing requirements for producing enantiopure chiral compounds. However, the remarkably close physical and chemical properties of enantiomers present significant obstacles, making it necessary to develop novel enantioseparation methods. This review comprehensively summaries the latest developments in the main enantioseparation methods, including preparative-scale chromatography, enantioselective liquid-liquid extraction, crystallization-based methods for chiral separation, deracemization process coupling racemization and crystallization, porous material method and membrane resolution method, focusing on significant cases involving crystallization, deracemization and membranes. Notably, potential trends and future directions are suggested based on the state-of-art "coupling" strategy, which may greatly reinvigorate the existing individual methods and facilitate the emergence of cross-cutting ideas among researchers from different enantioseparation domains.

4.
Small ; : e2307756, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987091

RESUMO

Organic photomechanical molecular crystals are promising candidates for photoactuators, which have potential applications as smart materials in various fields. However, it is still challenging to fabricate photomechanical molecular crystals with flexibility because most of the molecular crystals are brittle and the mechanism of flexible crystals remains controversial. Here, a plastically flexible α-cyanostilbene crystal has been synthesized that can undergo solid-state [2+2] cycloaddition reaction under violet or UV irradiation and exhibits excellent photomechanical bending properties. A hook-shaped crystal can lift 0.7 mg object upward by 1.5 cm, which proves its potential for application as photoactuators. When complex with the agarose polymer, the molecules will be in the form of macroscopic crystals, which can drive the composite films to exhibit excellent photomechanical bending performance. Upon irradiation with UV light, the composite film can quickly lift 18.0 mg object upward by 0.3 cm. The results of this work may facilitate the application of macroscale crystals as photoactuators.

5.
BMC Complement Med Ther ; 23(1): 308, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667364

RESUMO

BACKGROUND: Mulberry (Morus alba L.) leaf, as a medicinal and food homologous traditional Chinese medicine, has a clear therapeutic effect on type 2 diabetes mellitus (T2DM), yet its underlying mechanisms have not been totally clarified. The study aimed to explore the mechanism of mulberry leaf in the treatment of T2DM through tandem mass tag (TMT)-based quantitative proteomics analysis of skeletal muscle. METHODS: The anti-diabetic activity of mulberry leaf extract (MLE) was evaluated by using streptozotocin-induced diabetic rats at a dose of 4.0 g crude drug /kg p.o. daily for 8 weeks. Fasting blood glucose, body weight, food and water intake were monitored at specific intervals, and oral glucose tolerance test and insulin tolerance test were conducted at the 7th and 8th week respectively. At the end of the experiment, levels of glycated hemoglobin A1c, insulin, free fat acid, leptin, adiponectin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were assessed and the pathological changes of rat skeletal muscle were observed by HE staining. TMT-based quantitative proteomic analysis of skeletal muscle and bioinformatics analysis were performed and differentially expressed proteins (DEPs) were validated by western blot. The interactions between the components of MLE and DEPs were further assessed using molecular docking. RESULTS: After 8 weeks of MLE intervention, the clinical indications of T2DM such as body weight, food and water intake of rats were improved to a certain extent, while insulin sensitivity was increased and glycemic control was improved. Serum lipid profiles were significantly reduced, and the skeletal muscle fiber gap and atrophy were alleviated. Proteomic analysis of skeletal muscle showed that MLE treatment reversed 19 DEPs in T2DM rats, regulated cholesterol metabolism, fat digestion and absorption, vitamin digestion and absorption and ferroptosis signaling pathways. Key differential proteins Apolipoprotein A-1 (ApoA1) and ApoA4 were successfully validated by western blot and exhibited strong binding activity to the MLE's ingredients. CONCLUSIONS: This study first provided skeletal muscle proteomic changes in T2DM rats before and after MLE treatment, which may help us understand the molecular mechanisms, and provide a foundation for developing potential therapeutic targets of anti-T2DM of MLE.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Morus , Animais , Ratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteômica , Insulina , Peso Corporal , HDL-Colesterol , Extratos Vegetais/farmacologia
6.
Food Chem ; 419: 136051, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030210

RESUMO

This study employed solution crystallization in food engineering to prepare a high-purity vitamin intermediate, optimize its crystal morphology and regulate its particle size distribution. Model analysis was performed to investigate the quantitative correlations between the process variables and target parameters, indicating the substantial effect of temperature on separation performance. Under optimal conditions, the product purity exceeded 99.5%, which meets the requirement of the subsequent synthesis process. A high crystallization temperature reduced the agglomeration phenomenon and increased particle liquidity. Herein, we also proposed a temperature cycling strategy and a gassing crystallization routine to optimize the particle size. The results illustrated that the synergistic control of temperature and gassing crystallization could substantially improve the separation process. Overall, based on a high separation efficiency, this study combined model analysis and process intensification pathways to explore the process parameters on product properties such as purity, crystal morphology, and particle size distribution.


Assuntos
Cristalização , Cristalização/métodos , Tamanho da Partícula , Temperatura , Alimentos
7.
J Phys Chem A ; 127(17): 3862-3872, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093895

RESUMO

As one of the most important processes in the process of crystallization, nucleation determines the physicochemical properties of the crystal products. The mechanism of nucleation has not been sufficiently understood due to the complexity of the molecular assembly process. In this work, a rigid molecule of 3,5-dinitrobenzoic acid (DNBA) was selected as the model compound to investigate the connection between nucleation kinetics and solution chemistry and to investigate the mechanism of nucleation. The nucleation induction period was determined by the nonrandom method, and the parameters including interfacial energy γ and collision frequency f0C0 were calculated. FTIR, NMR, and MS were used to analyze the existing form of DNBA molecules in solutions. It was found that the solute exists in the form of monomer, multimers, and solvates in different solvents. Besides, molecular simulation and calculation were also used to investigate the intermolecular interactions of DNBA in different solvents, and the relationship between the molecular existing form and the nucleation kinetics was revealed. Finally, a possible nucleation mechanism of DNBA molecules in solution was proposed.

8.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677780

RESUMO

In this paper, methyl glycine diacetic acid (MGDA) was found to have great influence on the morphology and particle size of barium sulfate. The effects of additive, concentration, value of pH and reaction temperature on the morphology and particle size of barium sulfate were studied in detail. The results show that the concentration of reactant and temperature have little effect on the particle size of barium sulfate. However, the pH conditions of the solution and the dosage of MGDA can apparently affect the particle size distribution of barium sulfate. The particle size of barium sulfate particles increases and the morphology changes from polyhedral to rice-shaped with the decreasing of the dosage of MGDA. In solution with higher pH, smaller and rice-shaped barium sulfate was obtained. To investigate the interacting mechanism of MGDA, the binding energy between MGDA and barium sulfate surface was calculated. It was found that the larger absolute value of the binding energy would result in stronger growth inhibition on the crystal face. Finally, the experimental data and theoretical calculations were combined to elucidate the interacting mechanism of the additive on the morphology and particle size of barium sulfate.


Assuntos
Sulfato de Bário , Sulfato de Bário/química , Sulfato de Bário/metabolismo , Tamanho da Partícula , Temperatura , Propriedades de Superfície
9.
Sci Adv ; 8(32): eabo0789, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947662

RESUMO

Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.


Assuntos
Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
10.
ACS Cent Sci ; 8(8): 1102-1115, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36032766

RESUMO

Tumor immune microenvironment (TIME) regulators are promising cancer immunotherapeutic targets. IGF2BP1, as a crucial N 6-methyladenosine (m6A) reader protein, recognizes m6A target transcripts, ultimately leading to cancer development. However, currently, the biological function of IGF2BP1 in regulating the TIME is not well-understood. In this study, we report that IGF2BP1 knockdown induces cancer cell apoptosis, thereby significantly not only activating immune cell infiltration including CD4+, CD8+ T cells, CD56+ NK cells, and F4/80+ macrophage but also decreasing PD-L1 expression in hepatocellular carcinoma (HCC). Then, chemical genetics identifies a small-molecule cucurbitacin B (CuB), which directly targets IGF2BP1 at a unique site (Cys253) in the KH1-2 domains. This leads to a pharmacological allosteric effect to block IGF2BP1 recognition of m6A mRNA targets such as c-MYC, which is highly associated with cell apoptosis and immune response. In vivo, CuB exhibits an obvious anti-HCC effect through inducing apoptosis and subsequently recruits immune cells to tumor microenvironment as well as blocking PD-L1 expression. Collectively, IGF2BP1 may serve as a novel pharmacological allosteric target for anticancer therapeutics via mediating TIME.

11.
IUCrJ ; 9(Pt 3): 370-377, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546797

RESUMO

Water confined or constrained in a cellular environment can exhibit a diverse structural and dynamical role and hence will affect the self-assembly behavior of biomolecules. Herein, the role of water in the formation of l-phenyl-alanine crystals and amyloid fibrils was investigated. A microemulsion biomimetic system with controllable water pool size was employed to provide a microenvironment with different types of water, which was characterized by small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry. In a bound water environment, only plate-like l-phenyl-alanine crystals and their aggregates were formed, all of which are anhydrous crystal form I. However, when free water dominated, amyloid fibrils were observed. Free water not only stabilizes new oligomers in the initial nucleation stage but also forms bridged hydrogen bonds to induce vertical stacking to form a fibrous structure. The conformational changes of l-phenyl-alanine in different environments were detected by NMR. Different types of water trigger different nucleation and growth pathways, providing a new perspective for understanding molecular self-assembly in nanoconfinement.

12.
IUCrJ ; 9(Pt 2): 215-222, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371509

RESUMO

To understand the existence of complex meso-sized solute-rich clusters, which challenge the understanding of phases and phase equilibria, the formation and stabilization mechanisms of clusters in solution during nucleation of crystals and the associated physico-chemical rules are studied in detail. An essential part of the mechanism is the formation of long-lived oligomers between solute molecules. By means of density functional theory simulation and nuclear magnetic resonance experiments, this work showed that the oligomers in solution tend to be π-π stacking dimers. Clusters are formed under the combined effect of diffusion and monomer-dimer reaction. The physically meaningful quantities such as the monomer-dimer reaction rate constants and the diffusion coefficients of both species were obtained by reaction-diffusion kinetics and diffusion-ordered spectroscopy results. The evolution of cluster radius as a function of time, and the qualitative spatial distributions of monomer and dimer densities under steady-state were plotted to better understand the formation process and the nature of the clusters.

13.
Microbiol Spectr ; 10(2): e0145321, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377188

RESUMO

The recently identified proteobacterial antimicrobial compound efflux (PACE) transporters are multidrug transporters energized by the electrochemical gradient of protons. Here, we present the results of phylogenetic and functional studies on the PACE family transporter PA2880 from Pseudomonas aeruginosa. A phylogenetic analysis of the PACE family revealed that PA2880 and AceI from Acinetobacter baumannii are classified into evolutionarily distinct clades, although they both transport chlorhexidine. We demonstrate that PA2880 mainly exists as a dimer in solution, which is independent of pH, and its dimeric state is essential for its proper function. Electrogenicity studies revealed that the chlorhexidine/H+ antiport process is electrogenic. The function of several highly conserved residues was investigated. These findings provide further insights into the functional features of PACE family transporters, facilitating studies on their transport mechanisms. IMPORTANCE Pseudomonas aeruginosa is a pathogen that causes hospital-acquired (nosocomial) infections, such as ventilator-associated pneumonia and sepsis syndromes. Chlorhexidine diacetate is a disinfectant used for bacterial control in various environments potentially harboring P. aeruginosa. Therefore, investigation of the mechanism of the efflux of chlorhexidine mediated by PA2880, a PACE family transporter from P. aeruginosa, is of significance to combat bacterial infections. This study improves our understanding of the transport mechanism of PACE family transporters and will facilitate the effective utilization of chlorhexidine for P. aeruginosa control.


Assuntos
Acinetobacter baumannii , Infecção Hospitalar , Infecções por Pseudomonas , Antibacterianos/farmacologia , Clorexidina/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Filogenia , Pseudomonas aeruginosa/genética
14.
Mol Pharm ; 19(5): 1389-1399, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35230851

RESUMO

Alzheimer's disease is a chronic disease, and the long-term treatment of chronic diseases has always been a concern. Memantine (Mem) is approved by the US Food and Drug Administration for the treatment of moderate to severe Alzheimer's disease. In this study, reactions of memantine (Mem) with pamoic acid (Pam) were carried out to form insoluble salts (Mem-Pam). Four polymorphic forms (Forms I-IV) of Mem-Pam were successfully obtained through polymorphic screening, which were systematically characterized by X-ray powder diffraction (PXRD), thermal analysis (TGA and DSC), single-crystal X-ray diffraction (SXRD), and solid-state fluorescence. Compared with the hydrochloride form, the dissolution and release rates of these four forms are lower. The presence of pamoic acid reduces the release rate of memantine and makes it possible to achieve a sustained release of the drug. Interestingly, because of the presence of memantine, each polymorphic solid crystal of Mem-Pam has unique fluorescence emission. Therefore, memantine and pamoic acid have a synergistic effect on the fluorescence performance and can be expected to be used for real-time monitoring in continuous and controlled release drug delivery systems. In addition, the polymorphic solid crystals also exhibit reversible mechanochromic luminescence under the fumigation of acetonitrile vapor, which has a guiding role in the fluorescence design and synthesis of Pam substances and is expected to be used for information security, visual inspection of organic substances, etc.


Assuntos
Doença de Alzheimer , Memantina , Doença de Alzheimer/tratamento farmacológico , Humanos , Pós , Cloreto de Sódio , Difração de Raios X
15.
Anal Chem ; 94(7): 3180-3187, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133791

RESUMO

Cellular target identification plays an essential role in innovative drug development and pharmacological mechanism elucidation. However, very few practical experimental methodologies have been developed for identifying target proteins for supercomplex molecular systems such as biologically active phytochemicals or pharmaceutical compositions. To overcome this limitation, we synthesized gold nanoparticles (AuNPs) as solid scaffolds, which were bound with 4,4'-dihydroxybenzophenone (DHBP) as a photo-cross-linking group on the surface. Then, DHBP-modified AuNPs cross-linked various organic compounds from phytochemicals under ultraviolet radiation via carbene reactions, H-C bond insertion, for catalytic C-C bond formation. We next used the phytochemical-cross-linked AuNPs (phytoAuNPs) to pull down potential binding proteins from brain tissue lysate and identified 13 neuroprotective targets by mass spectrometry analysis. As an exemplary study, we selected Hsp60 as a crucial cellular target to further screen 14 target-binding compounds from phytochemicals through surface plasmon resonance (SPR) analysis, followed by Hsp60 activity detection and neuroprotective effect assay in cells. Collectively, this gold nanoparticle-based photo-cross-linking strategy can serve as a useful platform for discovering novel cellular targets for supercomplex molecular systems and help to explore pharmacological mechanisms and active substances.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Raios Ultravioleta
16.
Br J Nutr ; 127(6): 810-822, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33971987

RESUMO

The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Morus , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Morus/metabolismo , PPAR alfa/metabolismo , Folhas de Planta , Ratos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753818

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters are widespread in all domains of life. Bacterial MATE transporters confer multidrug resistance by utilizing an electrochemical gradient of H+ or Na+ to export xenobiotics across the membrane. Despite the availability of X-ray structures of several MATE transporters, a detailed understanding of the transport mechanism has remained elusive. Here we report the crystal structure of a MATE transporter from Aquifex aeolicus at 2.0-Å resolution. In light of its phylogenetic placement outside of the diversity of hitherto-described MATE transporters and the lack of conserved acidic residues, this protein may represent a subfamily of prokaryotic MATE transporters, which was proven by phylogenetic analysis. Furthermore, the crystal structure and substrate docking results indicate that the substrate binding site is located in the N bundle. The importance of residues surrounding this binding site was demonstrated by structure-based site-directed mutagenesis. We suggest that Aq_128 is functionally similar but structurally diverse from DinF subfamily transporters. Our results provide structural insights into the MATE transporter, which further advances our global understanding of this important transporter family.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Aquifex/genética , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Mutagênese Sítio-Dirigida , Filogenia , Células Procarióticas/fisiologia
18.
Nanoscale ; 13(32): 13786-13794, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477653

RESUMO

Removal of nitrate in wastewater is of great importance to environmental protection and humanity. However, the competitive reaction of hydrogen evolution (HER), which could occupy most active sites of the electrocatalyst, is one of the big challenges for nitrate removal. In this study, a novel zeolitic imidazolate framework-8 film engineered bismuth nanosheet electrocatalyst (ZIF-8/Bi-CC) was designed and synthesized for the electrochemical reduction of nitrate. The water contact angle and electrochemical tests demonstrated that the construction of the hydrophobic ZIF-8 film effectively weakened the competition of HER. And the nitrate removal efficiency and ammonium selectivity increased by 25.9% and 34.2% respectively after bismuth nanosheets were embedded into the ZIF-8 film. Besides, the bismuth concentration detection results indicated that the ZIF-8 film as the protective shell could effectively prevent the leaching of bismuth into the solution. More importantly, the final nitrate removal rate of ZIF-8/Bi-CC was close to 90% after 5 h when treating actual garbage fly ash wastewater, the NITRR efficiency stability and the obtained product were confirmed by five electrochemical cycles. The metal-organic framework film engineered electrocatalyst is a promising strategy for designing a new catalyst for the removal of nitrate in industrial wastewater.

19.
Acta Pharm Sin B ; 11(7): 1853-1866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386324

RESUMO

Mitochondrial shape rapidly changes by dynamic balance of fusion and fission to adjust to constantly changing energy demands of cancer cells. Mitochondrial dynamics balance is exactly regulated by molecular motor consisted of myosin and actin cytoskeleton proteins. Thus, targeting myosin-actin molecular motor is considered as a promising strategy for anti-cancer. In this study, we performed a proof-of-concept study with a natural-derived small-molecule J13 to test the feasibility of anti-cancer therapeutics via pharmacologically targeting molecular motor. Here, we found J13 could directly target myosin-9 (MYH9)-actin molecular motor to promote mitochondrial fission progression, and markedly inhibited cancer cells survival, proliferation and migration. Mechanism study revealed that J13 impaired MYH9-actin interaction to inactivate molecular motor, and caused a cytoskeleton-dependent mitochondrial dynamics imbalance. Moreover, stable isotope labeling with amino acids in cell culture (SILAC) technology-coupled with pulldown analysis identified HSPA9 as a crucial adaptor protein connecting MYH9-actin molecular motor to mitochondrial fission. Taken together, we reported the first natural small-molecule directly targeting MYH9-actin molecular motor for anti-cancer translational research. Besides, our study also proved the conceptual practicability of pharmacologically disrupting mitochondrial fission/fusion dynamics in human cancer therapy.

20.
Ultrason Sonochem ; 77: 105698, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375944

RESUMO

In this work, pulsed ultrasound was used to facilitate steady-state reactive crystallization and increase the final yield and productivity of lithium carbonate in continuously operated single and multistage mixed suspension mixed product removal (MSMPR) crystallizers. Experimental analyses of the stirred tank MSMPR cascade were performed to investigate the effects of ultrasound field, residence time and temperature which contributed to the steady-state yield, crystal size distribution and crystal morphology. The results show that pulsed ultrasound can not only significantly enhance the reaction rate, but also help to improve the particle size distribution and the crystal habit. Subsequently, a population balance model was developed and applied to estimate the final yield of the continuous process of the lithium bicarbonate thermal decomposition reaction coupling lithium carbonate crystallization. The consistency of the final yield between the experiments and the simulations proved the reliability of the established model. Through the experimental and simulation analyses, it is demonstrated that the use of pulsed ultrasound, higher final stage temperature, MSMPR cascade design and appropriate residence time help to achieve higher yield and productivity. Furtherly, based on the conclusion drawn, pulsed ultrasound enhanced three-stage MSMPR cascaded lithium carbonate continuous crystallization processes were designed, and the maximum productivity of 44.0 g/h was obtained experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...